Agent Design-Experiment Command¶
The agent design-experiment
command helps design rigorous experiments to validate research hypotheses or extend existing work, considering resource constraints.
Basic Usage¶
Examples¶
Simple Experiment Design¶
# Design experiment for hypothesis
scoutml agent design-experiment 2010.11929 \
"ViT works on small datasets with augmentation"
Resource-Constrained Design¶
# Design with constraints
scoutml agent design-experiment 2103.00020 \
"CLIP zero-shot performance improves with domain-specific fine-tuning" \
--gpu-hours 100 \
--datasets CIFAR-10 \
--datasets CIFAR-100
Options¶
Option | Type | Default | Description |
---|---|---|---|
--gpu-hours |
INTEGER | None | Available GPU hours |
--datasets |
TEXT | None | Available datasets (can specify multiple) |
--output |
CHOICE | rich | Output format: rich/json |
--export |
PATH | None | Export experiment design to file |
Hypothesis Types¶
Performance Improvement¶
Method Adaptation¶
Efficiency Claims¶
scoutml agent design-experiment 2103.00020 \
"CLIP can be distilled to 10% size with 90% performance"
Domain Transfer¶
scoutml agent design-experiment 1906.08237 \
"RoBERTa fine-tuning transfers to low-resource languages"
Experiment Components¶
1. Hypothesis Analysis¶
- Hypothesis breakdown
- Testable claims
- Success criteria
- Risk assessment
2. Experimental Design¶
- Control variables
- Treatment conditions
- Evaluation metrics
- Statistical tests
3. Implementation Plan¶
- Code modifications
- Data preparation
- Training procedures
- Evaluation pipeline
4. Resource Allocation¶
- Compute distribution
- Time estimates
- Priority ordering
- Fallback plans
5. Expected Outcomes¶
- Success scenarios
- Failure modes
- Learning objectives
- Publication potential
Resource Planning¶
GPU Hours Allocation¶
# Limited compute budget
scoutml agent design-experiment 2010.11929 \
"ViT outperforms CNNs on small medical datasets" \
--gpu-hours 50 \
--datasets "ChestX-ray14"
The agent will: - Estimate training time - Suggest model sizes - Recommend iterations - Plan ablations
Dataset Constraints¶
# Work with available data
scoutml agent design-experiment 2103.00020 \
"CLIP generalizes to new domains via prompt engineering" \
--datasets ImageNet \
--datasets "Food-101" \
--datasets "Stanford-Cars"
Use Cases¶
Research Validation¶
# Validate paper claims
scoutml agent design-experiment 2301.08727 \
"Method X really achieves claimed 95% accuracy" \
--gpu-hours 200
Method Extension¶
# Extend to new domain
scoutml agent design-experiment 1810.04805 \
"BERT works for code understanding with minimal changes" \
--datasets "CodeSearchNet"
Comparative Studies¶
# Compare approaches
scoutml agent design-experiment 2010.11929 \
"ViT vs CNN performance varies by dataset size" \
--datasets CIFAR-10 \
--datasets CIFAR-100 \
--datasets ImageNet
Ablation Studies¶
# Component analysis
scoutml agent design-experiment 2103.00020 \
"CLIP text encoder contributes more than vision encoder" \
--gpu-hours 150
Advanced Usage¶
Multi-Hypothesis Testing¶
# Test multiple related hypotheses
hypotheses=(
"ViT benefits from CNN-style augmentation"
"ViT requires less augmentation than CNNs"
"ViT augmentation needs are task-dependent"
)
for hyp in "${hypotheses[@]}"; do
scoutml agent design-experiment 2010.11929 "$hyp" \
--gpu-hours 50 \
--export "experiment_$(echo $hyp | md5sum | cut -c1-8).md"
done
Progressive Experimentation¶
# Start small, scale up
# Phase 1: Pilot
scoutml agent design-experiment 2103.00020 \
"CLIP fine-tuning improves domain performance" \
--gpu-hours 10 \
--datasets CIFAR-10
# Phase 2: Full study
scoutml agent design-experiment 2103.00020 \
"CLIP fine-tuning scales across domains" \
--gpu-hours 200 \
--datasets CIFAR-10 \
--datasets ImageNet \
--datasets "Domain-Specific-Dataset"
Reproducibility Studies¶
# Design reproduction experiment
scoutml agent design-experiment 1810.04805 \
"BERT results are reproducible with different seeds" \
--gpu-hours 500 \
--export bert_reproducibility.md
Output Examples¶
Experimental Protocol¶
## Experiment Design: ViT on Small Datasets
### Hypothesis
Vision Transformers can achieve competitive performance on small
datasets when combined with strong augmentation strategies.
### Experimental Setup
1. **Baseline**: ViT-S/16 trained on CIFAR-10
2. **Treatment**: Add RandAugment, MixUp, CutMix
3. **Control**: ResNet50 with same augmentations
### Metrics
- Top-1 accuracy
- Training efficiency (samples to convergence)
- Overfitting indicators
### Resource Allocation
- 20 GPU hours: Baseline experiments
- 40 GPU hours: Augmentation experiments
- 40 GPU hours: Ablation studies
JSON Output¶
{
"hypothesis": "ViT works on small datasets with augmentation",
"design": {
"type": "controlled_experiment",
"independent_variables": ["augmentation_strategy"],
"dependent_variables": ["accuracy", "convergence_speed"],
"control_group": "ViT without augmentation",
"treatment_groups": ["ViT+RandAugment", "ViT+MixUp", "ViT+Both"]
},
"resources": {
"estimated_gpu_hours": 85,
"runs_per_condition": 3,
"models": ["ViT-S/16", "ResNet50"]
},
"implementation": {
"code_changes": [...],
"data_pipeline": [...],
"evaluation": [...]
}
}
Best Practices¶
Hypothesis Formation¶
- Be specific - Vague hypotheses lead to poor experiments
- Make it testable - Define clear success criteria
- Consider null hypothesis - What if it doesn't work?
- Scope appropriately - Match hypothesis to resources
Experimental Design¶
- Control variables - One change at a time
- Multiple runs - Account for randomness
- Proper baselines - Fair comparisons
- Statistical rigor - Significance testing
Resource Management¶
- Budget buffer - Add 20% for issues
- Prioritize core - Essential experiments first
- Plan checkpoints - Save intermediate results
- Have backups - Alternative approaches
Common Workflows¶
Publication Pipeline¶
# 1. Initial idea
HYPOTHESIS="Novel augmentation improves ViT on small data"
# 2. Design experiment
scoutml agent design-experiment 2010.11929 "$HYPOTHESIS" \
--gpu-hours 200 \
--export experiment_plan.md
# 3. Get implementation
scoutml agent implement 2010.11929
# 4. Run experiments (follow design)
# 5. Write paper
scoutml review "data augmentation vision transformers" \
--export related_work.md
Grant Proposal Support¶
# Design experiments for proposal
scoutml agent design-experiment 2103.00020 \
"Multi-modal learning improves medical diagnosis" \
--gpu-hours 1000 \
--datasets "MIMIC-CXR" \
--datasets "CheXpert" \
--export grant_experiments.md
Tips and Tricks¶
Strong Experiments¶
- Multiple baselines - Show broad improvement
- Ablation studies - Understand components
- Error analysis - Learn from failures
- Reproducibility - Document everything
Common Pitfalls¶
- Too ambitious - Start smaller
- Poor controls - Missing baselines
- P-hacking - Define metrics upfront
- Resource underestimation - Buffer time
Publication Strategy¶
- Novel angle - New perspective on known method
- Thorough evaluation - Multiple datasets/metrics
- Clear story - Hypothesis → Design → Results
- Open science - Share code/data
Related Commands¶
paper
- Understand base paperagent implement
- Get implementationagent critique
- Learn from paper's experimentsreview
- Survey related work