Agent Implement Command¶
The agent implement
command generates step-by-step implementation guides for research papers, tailored to your framework and experience level.
Basic Usage¶
Examples¶
Simple Implementation Guide¶
# Basic PyTorch implementation
scoutml agent implement 2010.11929
# TensorFlow implementation
scoutml agent implement 2010.11929 --framework tensorflow
Customized Guide¶
# Beginner-friendly PyTorch guide
scoutml agent implement 1810.04805 \
--framework pytorch \
--level beginner
Options¶
Option | Type | Default | Description |
---|---|---|---|
--framework |
CHOICE | pytorch | Target framework: pytorch/tensorflow/jax/other |
--level |
CHOICE | intermediate | Experience level: beginner/intermediate/advanced |
--output |
CHOICE | rich | Output format: rich/json |
--export |
PATH | None | Export guide to file |
Framework Options¶
PyTorch (Default)¶
Includes: - Module definitions - Forward pass implementation - Training loop structure - PyTorch-specific optimizations
TensorFlow¶
Includes: - Keras model architecture - Custom layers if needed - TF-specific features - TPU considerations
JAX¶
Includes: - Functional programming approach - Flax/Haiku modules - JIT compilation tips - vmap usage
Other Frameworks¶
Provides: - Framework-agnostic pseudocode - General architecture description - Mathematical formulations - Implementation concepts
Experience Levels¶
Beginner¶
Features: - Detailed explanations - Code comments - Common pitfalls - Prerequisite knowledge - Resource links
Intermediate (Default)¶
Features: - Balanced detail - Key implementation points - Optimization tips - Best practices
Advanced¶
Features: - Concise implementation - Performance optimizations - Advanced techniques - Research extensions
Guide Components¶
1. Overview¶
- Paper summary
- Key contributions
- Implementation complexity
2. Prerequisites¶
- Required knowledge
- Dependencies
- Hardware requirements
3. Architecture¶
- Model components
- Data flow
- Key algorithms
4. Implementation Steps¶
- Step-by-step guide
- Code snippets
- Critical details
5. Training Process¶
- Data preparation
- Training loop
- Hyperparameters
- Evaluation metrics
6. Common Issues¶
- Debugging tips
- Performance tuning
- Troubleshooting
7. Extensions¶
- Improvements
- Variations
- Research directions
Use Cases¶
Quick Prototyping¶
# Get implementation for new paper
scoutml agent implement 2301.08727 \
--framework pytorch \
--level intermediate \
--export vit_implementation.md
Learning New Concepts¶
# Understand transformer implementation
scoutml agent implement 1706.03762 \
--framework pytorch \
--level beginner \
--export transformer_tutorial.md
Research Reproduction¶
# Reproduce paper results
scoutml agent implement 2010.11929 \
--framework pytorch \
--level advanced
Course Projects¶
# Student-friendly implementation
scoutml agent implement 1810.04805 \
--framework tensorflow \
--level beginner \
--export bert_project.md
Advanced Usage¶
Batch Implementation Guides¶
# Generate guides for multiple papers
papers=("2010.11929" "1810.04805" "2103.00020")
for paper in "${papers[@]}"; do
scoutml agent implement "$paper" \
--framework pytorch \
--output json \
--export "impl_${paper}.json"
done
Framework Comparison¶
# Compare implementations across frameworks
PAPER="2103.00020"
for framework in pytorch tensorflow jax; do
echo "=== $framework implementation ==="
scoutml agent implement $PAPER \
--framework $framework \
--export "${PAPER}_${framework}.md"
done
Progressive Learning¶
# Start with beginner, progress to advanced
PAPER="1706.03762"
for level in beginner intermediate advanced; do
scoutml agent implement $PAPER \
--level $level \
--export "transformer_${level}.md"
done
Output Examples¶
Rich Output (Default)¶
Displays formatted guide with: - Syntax-highlighted code - Structured sections - Visual hierarchy - Links to resources
JSON Output¶
Returns:
{
"paper": {
"arxiv_id": "2010.11929",
"title": "An Image is Worth 16x16 Words..."
},
"implementation": {
"overview": "...",
"prerequisites": [...],
"architecture": {...},
"steps": [...],
"code_snippets": {...}
}
}
Best Practices¶
Choosing Papers¶
- Start with simpler papers if learning
- Check paper clarity - some explain better
- Look for papers with code as reference
- Consider computational requirements
Framework Selection¶
- Use familiar framework when possible
- Match paper's framework if specified
- Consider deployment target
- Check framework maturity for method
Level Selection¶
- Be honest about experience
- Start with lower level if unsure
- Use beginner for teaching
- Advanced for research/production
Common Workflows¶
Paper to Production¶
# 1. Get implementation guide
scoutml agent implement 2103.00020 --framework pytorch --level advanced
# 2. Get optimization tips
scoutml agent solve-limitations 2103.00020 --focus computational
# 3. Compare with alternatives
scoutml compare 2103.00020 2111.06377
Learning Path¶
# 1. Start with seminal paper
scoutml agent implement 1706.03762 --level beginner
# 2. Move to applications
scoutml agent implement 1810.04805 --level intermediate
# 3. Try latest research
scoutml agent implement 2010.11929 --level advanced
Tips and Tricks¶
Implementation Strategy¶
- Read paper first - understand concepts
- Start small - implement core first
- Validate often - check against paper
- Use checkpoints - save progress
Debugging Help¶
If implementation fails: 1. Check prerequisites section 2. Verify data format 3. Compare with paper's code 4. Reduce model size first
Performance Tips¶
- Profile code early
- Start with small data
- Use mixed precision when stable
- Monitor memory usage
Related Commands¶
paper
- Understand paper detailsagent critique
- Get paper analysisagent solve-limitations
- Address implementation challengescompare
- Compare with other approaches