Skip to content

Agent Solve-Limitations Command

The agent solve-limitations command provides practical solutions and workarounds for paper limitations, helping you adapt research to real-world constraints.

Basic Usage

scoutml agent solve-limitations ARXIV_ID [OPTIONS]

Examples

General Solutions

# Get solutions for all limitations
scoutml agent solve-limitations 2010.11929

Focused Solutions

# Focus on computational limitations
scoutml agent solve-limitations 2103.00020 \
  --focus computational \
  --tradeoffs speed \
  --tradeoffs memory

Options

Option Type Default Description
--focus TEXT None Specific limitation to focus on
--tradeoffs TEXT None Acceptable tradeoffs (multiple): accuracy/speed/memory/complexity/data_requirements/quality
--output CHOICE rich Output format: rich/json
--export PATH None Export solutions to file

Limitation Types

Computational

scoutml agent solve-limitations 2103.00020 --focus computational

Addresses: - High memory usage - Long training time - Inference speed - Hardware requirements

Data Requirements

scoutml agent solve-limitations 1810.04805 --focus "data requirements"

Solves: - Large dataset needs - Annotation costs - Data quality issues - Domain specificity

Scalability

scoutml agent solve-limitations 2010.11929 --focus scalability

Handles: - Model size constraints - Batch processing - Distributed training - Production deployment

Accuracy/Performance

scoutml agent solve-limitations 1906.08237 --focus accuracy

Improves: - Model performance - Generalization - Robustness - Edge cases

Tradeoff Options

Speed Optimization

scoutml agent solve-limitations 2103.00020 \
  --tradeoffs speed \
  --tradeoffs accuracy

Willing to trade accuracy for speed.

Memory Efficiency

scoutml agent solve-limitations 2010.11929 \
  --tradeoffs memory \
  --tradeoffs quality

Reduce memory at cost of quality.

Simplicity

scoutml agent solve-limitations 1706.03762 \
  --tradeoffs complexity \
  --tradeoffs accuracy

Simpler model, acceptable accuracy loss.

Solution Components

1. Limitation Analysis

  • Identified limitations
  • Root causes
  • Impact assessment

2. Solution Strategies

  • Immediate fixes
  • Architectural changes
  • Alternative approaches
  • Hybrid solutions

3. Implementation Details

  • Code modifications
  • Configuration changes
  • Tool suggestions
  • Library recommendations

4. Tradeoff Analysis

  • What you gain
  • What you lose
  • When to use
  • Quantitative impacts

5. Case Studies

  • Real implementations
  • Success stories
  • Benchmark results
  • Practical examples

Use Cases

Production Deployment

# Optimize for production
scoutml agent solve-limitations 2103.00020 \
  --focus computational \
  --tradeoffs speed \
  --tradeoffs memory \
  --export production_optimizations.md

Resource-Constrained Environment

# Mobile/edge deployment
scoutml agent solve-limitations 2010.11929 \
  --focus "model size" \
  --tradeoffs accuracy \
  --tradeoffs memory

Limited Data Scenarios

# Few-shot/low-resource
scoutml agent solve-limitations 1810.04805 \
  --focus "data requirements" \
  --tradeoffs quality

Real-time Applications

# Latency-critical systems
scoutml agent solve-limitations 2103.00020 \
  --focus "inference speed" \
  --tradeoffs accuracy \
  --tradeoffs quality

Advanced Usage

Progressive Optimization

# Start with original
scoutml agent implement 2103.00020

# Get initial optimizations
scoutml agent solve-limitations 2103.00020 \
  --focus computational \
  --tradeoffs accuracy

# Further optimize
scoutml agent solve-limitations 2103.00020 \
  --focus "inference speed" \
  --tradeoffs memory \
  --tradeoffs quality

Multi-Model Solutions

# Compare solutions across models
models=("2010.11929" "2102.05918" "2105.08050")

for model in "${models[@]}"; do
    scoutml agent solve-limitations "$model" \
        --focus computational \
        --tradeoffs speed \
        --output json \
        --export "solutions_${model}.json"
done

Constraint-Based Selection

# Find model that fits constraints
# First, get limitations
scoutml agent critique 2103.00020 --aspects reproducibility

# Then solve for your constraints
scoutml agent solve-limitations 2103.00020 \
  --focus "memory usage" \
  --tradeoffs accuracy \
  --export memory_optimized.md

Solution Examples

Model Compression

For high memory usage: - Quantization techniques - Pruning strategies - Knowledge distillation - Architecture search

Data Efficiency

For large data requirements: - Data augmentation - Semi-supervised learning - Transfer learning - Synthetic data

Speed Optimization

For slow inference: - Model optimization - Caching strategies - Batch processing - Hardware acceleration

Output Examples

Rich Output

Structured display with: - Problem → Solution mapping - Implementation code - Benchmark comparisons - Decision trees

JSON Output

{
  "limitations": [
    {
      "type": "computational",
      "description": "Requires 32GB GPU memory",
      "severity": "high"
    }
  ],
  "solutions": [
    {
      "name": "Gradient checkpointing",
      "tradeoffs": {
        "memory": "-60%",
        "speed": "+40% training time"
      },
      "implementation": "...",
      "effectiveness": "high"
    }
  ]
}

Best Practices

Choosing Tradeoffs

  1. Be realistic about acceptable losses
  2. Prioritize critical metrics
  3. Consider cascade effects
  4. Test empirically

Implementation Strategy

  1. Start with easy wins - Config changes
  2. Measure baseline - Know starting point
  3. Apply incrementally - One change at a time
  4. Validate results - Ensure quality

Production Considerations

  1. Test thoroughly - Edge cases matter
  2. Monitor metrics - Track tradeoffs
  3. Have rollback plan - Safety first
  4. Document changes - Future reference

Common Workflows

Optimization Pipeline

# 1. Identify limitations
scoutml agent critique 2103.00020

# 2. Get solutions
scoutml agent solve-limitations 2103.00020 \
  --focus computational

# 3. Implement optimizations
scoutml agent implement 2103.00020 --level advanced

# 4. Compare results
scoutml compare 2103.00020 2111.06377  # Compare with efficient variant

Feasibility Analysis

# Check if paper fits constraints
PAPER="2301.08727"
MAX_MEMORY="8GB"
MAX_LATENCY="100ms"

scoutml agent solve-limitations $PAPER \
  --focus computational \
  --tradeoffs accuracy \
  --output json | \
  jq '.solutions[] | select(.requirements.memory <= "8GB")'

Tips and Tricks

Solution Selection

  1. Match constraints to production needs
  2. Consider compound solutions
  3. Benchmark everything
  4. Read case studies

Common Optimizations

  1. Mixed precision - Often free speedup
  2. Batch size tuning - Memory/speed balance
  3. Model pruning - Reduce size/compute
  4. Caching - Reuse computations

Avoiding Pitfalls

  1. Don't over-optimize early
  2. Maintain accuracy thresholds
  3. Consider maintenance cost
  4. Document all changes