Agent Solve-Limitations Command¶
The agent solve-limitations
command provides practical solutions and workarounds for paper limitations, helping you adapt research to real-world constraints.
Basic Usage¶
Examples¶
General Solutions¶
Focused Solutions¶
# Focus on computational limitations
scoutml agent solve-limitations 2103.00020 \
--focus computational \
--tradeoffs speed \
--tradeoffs memory
Options¶
Option | Type | Default | Description |
---|---|---|---|
--focus |
TEXT | None | Specific limitation to focus on |
--tradeoffs |
TEXT | None | Acceptable tradeoffs (multiple): accuracy/speed/memory/complexity/data_requirements/quality |
--output |
CHOICE | rich | Output format: rich/json |
--export |
PATH | None | Export solutions to file |
Limitation Types¶
Computational¶
Addresses: - High memory usage - Long training time - Inference speed - Hardware requirements
Data Requirements¶
Solves: - Large dataset needs - Annotation costs - Data quality issues - Domain specificity
Scalability¶
Handles: - Model size constraints - Batch processing - Distributed training - Production deployment
Accuracy/Performance¶
Improves: - Model performance - Generalization - Robustness - Edge cases
Tradeoff Options¶
Speed Optimization¶
Willing to trade accuracy for speed.
Memory Efficiency¶
Reduce memory at cost of quality.
Simplicity¶
Simpler model, acceptable accuracy loss.
Solution Components¶
1. Limitation Analysis¶
- Identified limitations
- Root causes
- Impact assessment
2. Solution Strategies¶
- Immediate fixes
- Architectural changes
- Alternative approaches
- Hybrid solutions
3. Implementation Details¶
- Code modifications
- Configuration changes
- Tool suggestions
- Library recommendations
4. Tradeoff Analysis¶
- What you gain
- What you lose
- When to use
- Quantitative impacts
5. Case Studies¶
- Real implementations
- Success stories
- Benchmark results
- Practical examples
Use Cases¶
Production Deployment¶
# Optimize for production
scoutml agent solve-limitations 2103.00020 \
--focus computational \
--tradeoffs speed \
--tradeoffs memory \
--export production_optimizations.md
Resource-Constrained Environment¶
# Mobile/edge deployment
scoutml agent solve-limitations 2010.11929 \
--focus "model size" \
--tradeoffs accuracy \
--tradeoffs memory
Limited Data Scenarios¶
# Few-shot/low-resource
scoutml agent solve-limitations 1810.04805 \
--focus "data requirements" \
--tradeoffs quality
Real-time Applications¶
# Latency-critical systems
scoutml agent solve-limitations 2103.00020 \
--focus "inference speed" \
--tradeoffs accuracy \
--tradeoffs quality
Advanced Usage¶
Progressive Optimization¶
# Start with original
scoutml agent implement 2103.00020
# Get initial optimizations
scoutml agent solve-limitations 2103.00020 \
--focus computational \
--tradeoffs accuracy
# Further optimize
scoutml agent solve-limitations 2103.00020 \
--focus "inference speed" \
--tradeoffs memory \
--tradeoffs quality
Multi-Model Solutions¶
# Compare solutions across models
models=("2010.11929" "2102.05918" "2105.08050")
for model in "${models[@]}"; do
scoutml agent solve-limitations "$model" \
--focus computational \
--tradeoffs speed \
--output json \
--export "solutions_${model}.json"
done
Constraint-Based Selection¶
# Find model that fits constraints
# First, get limitations
scoutml agent critique 2103.00020 --aspects reproducibility
# Then solve for your constraints
scoutml agent solve-limitations 2103.00020 \
--focus "memory usage" \
--tradeoffs accuracy \
--export memory_optimized.md
Solution Examples¶
Model Compression¶
For high memory usage: - Quantization techniques - Pruning strategies - Knowledge distillation - Architecture search
Data Efficiency¶
For large data requirements: - Data augmentation - Semi-supervised learning - Transfer learning - Synthetic data
Speed Optimization¶
For slow inference: - Model optimization - Caching strategies - Batch processing - Hardware acceleration
Output Examples¶
Rich Output¶
Structured display with: - Problem → Solution mapping - Implementation code - Benchmark comparisons - Decision trees
JSON Output¶
{
"limitations": [
{
"type": "computational",
"description": "Requires 32GB GPU memory",
"severity": "high"
}
],
"solutions": [
{
"name": "Gradient checkpointing",
"tradeoffs": {
"memory": "-60%",
"speed": "+40% training time"
},
"implementation": "...",
"effectiveness": "high"
}
]
}
Best Practices¶
Choosing Tradeoffs¶
- Be realistic about acceptable losses
- Prioritize critical metrics
- Consider cascade effects
- Test empirically
Implementation Strategy¶
- Start with easy wins - Config changes
- Measure baseline - Know starting point
- Apply incrementally - One change at a time
- Validate results - Ensure quality
Production Considerations¶
- Test thoroughly - Edge cases matter
- Monitor metrics - Track tradeoffs
- Have rollback plan - Safety first
- Document changes - Future reference
Common Workflows¶
Optimization Pipeline¶
# 1. Identify limitations
scoutml agent critique 2103.00020
# 2. Get solutions
scoutml agent solve-limitations 2103.00020 \
--focus computational
# 3. Implement optimizations
scoutml agent implement 2103.00020 --level advanced
# 4. Compare results
scoutml compare 2103.00020 2111.06377 # Compare with efficient variant
Feasibility Analysis¶
# Check if paper fits constraints
PAPER="2301.08727"
MAX_MEMORY="8GB"
MAX_LATENCY="100ms"
scoutml agent solve-limitations $PAPER \
--focus computational \
--tradeoffs accuracy \
--output json | \
jq '.solutions[] | select(.requirements.memory <= "8GB")'
Tips and Tricks¶
Solution Selection¶
- Match constraints to production needs
- Consider compound solutions
- Benchmark everything
- Read case studies
Common Optimizations¶
- Mixed precision - Often free speedup
- Batch size tuning - Memory/speed balance
- Model pruning - Reduce size/compute
- Caching - Reuse computations
Avoiding Pitfalls¶
- Don't over-optimize early
- Maintain accuracy thresholds
- Consider maintenance cost
- Document all changes
Related Commands¶
agent critique
- Identify limitationsagent implement
- Get base implementationcompare
- Compare with alternatives