Insights Reproducibility Command¶
The insights reproducibility
command analyzes papers ranked by reproducibility score, helping identify well-documented, implementable research.
Basic Usage¶
Examples¶
General Analysis¶
# Top reproducible papers
scoutml insights reproducibility
# Domain-specific
scoutml insights reproducibility --domain "computer vision"
Filtered Analysis¶
Options¶
Option | Type | Default | Description |
---|---|---|---|
--domain |
TEXT | None | Filter by research domain |
--year-min |
INTEGER | None | Minimum publication year |
--year-max |
INTEGER | None | Maximum publication year |
--limit |
INTEGER | 20 | Number of results |
--output |
CHOICE | rich | Output format: rich/json/csv |
--export |
PATH | None | Export results to file |
Reproducibility Factors¶
The analysis considers:
Code Availability¶
- Official implementation
- Multiple implementations
- Framework diversity
- Documentation quality
Data Accessibility¶
- Public datasets
- Data preprocessing steps
- Download instructions
- Synthetic data options
Documentation Quality¶
- Implementation details
- Hyperparameter specifications
- Training procedures
- Evaluation protocols
Community Validation¶
- Reproduction attempts
- Independent verification
- Blog posts/tutorials
- Course materials
Computational Requirements¶
- Hardware specifications
- Training time estimates
- Memory requirements
- Cost estimates
Reproducibility Scores¶
Score Interpretation¶
- 90-100: Exceptional reproducibility
- 80-89: Highly reproducible
- 70-79: Good reproducibility
- 60-69: Moderate challenges
- Below 60: Significant challenges
Score Components¶
# See detailed scoring
scoutml insights reproducibility --output json | \
jq '.[] | {paper: .title, score: .reproducibility_score, components: .score_breakdown}'
Use Cases¶
Implementation Planning¶
# Find implementable papers in domain
scoutml insights reproducibility \
--domain "nlp" \
--year-min 2021 \
--limit 20 \
--export implementable_nlp.json
Research Selection¶
# Papers for course projects
scoutml insights reproducibility \
--domain "computer vision" \
--limit 30 \
--export course_papers.csv
Benchmark Studies¶
# Well-documented benchmarks
scoutml insights reproducibility \
--domain "reinforcement learning" \
--year-min 2020
Industry Adoption¶
# Production-ready research
scoutml insights reproducibility \
--limit 50 | \
grep -i "efficient\|fast\|lightweight\|optimized"
Advanced Usage¶
Trend Analysis¶
# Reproducibility over time
for year in 2019 2020 2021 2022 2023; do
echo "=== Year $year ==="
scoutml insights reproducibility \
--year-min $year \
--year-max $year \
--limit 10 \
--output json | \
jq -r '.[] | .reproducibility_score' | \
awk '{sum+=$1} END {print "Average:", sum/NR}'
done
Domain Comparison¶
# Compare domains
domains=("computer vision" "nlp" "reinforcement learning")
for domain in "${domains[@]}"; do
echo "=== $domain ==="
scoutml insights reproducibility \
--domain "$domain" \
--limit 20 \
--output json | \
jq -r '.[] | .reproducibility_score' | \
awk '{sum+=$1} END {print "Average:", sum/NR}'
done
Finding Exemplars¶
# Best practices examples
scoutml insights reproducibility \
--limit 10 \
--output json | \
jq '.[] | select(.reproducibility_score > 90) | {
title: .title,
arxiv_id: .arxiv_id,
factors: .positive_factors
}'
Output Examples¶
Rich Output (Default)¶
Displays: - Ranked table of papers - Color-coded scores - Key reproducibility factors - Implementation links
JSON Output¶
{
"arxiv_id": "2010.11929",
"title": "An Image is Worth 16x16 Words...",
"reproducibility_score": 92,
"score_breakdown": {
"code_availability": 95,
"documentation": 90,
"data_accessibility": 95,
"community_validation": 88,
"computational_feasibility": 92
},
"positive_factors": [
"Official implementation available",
"Multiple framework versions",
"Detailed training recipes",
"Pre-trained models provided"
],
"challenges": [
"Large model requires significant GPU memory"
]
}
CSV Output¶
arxiv_id,title,score,code,documentation,data,validation,compute
2010.11929,"An Image is Worth...",92,95,90,95,88,92
1810.04805,"BERT: Pre-training...",89,90,85,92,90,87
Interpretation Guide¶
High Scores Indicate¶
- Available code - Can start immediately
- Clear instructions - Less debugging
- Known requirements - Can plan resources
- Community support - Help available
Low Scores Suggest¶
- Missing details - Implementation gaps
- Proprietary data - Can't fully reproduce
- Unclear methods - Ambiguous descriptions
- High complexity - Difficult to implement
Best Practices¶
Paper Selection¶
- Score > 80 for critical projects
- Score > 70 for exploration
- Check specific factors you care about
- Read associated critiques
Implementation Success¶
- Start with high scores when learning
- Check community repos for help
- Look for tutorials and blog posts
- Join paper discussions
Common Workflows¶
Course Material Selection¶
# Find teachable papers
scoutml insights reproducibility \
--domain "computer vision" \
--year-min 2020 \
--limit 50 \
--export course_papers.json
# Filter for specific topics
cat course_papers.json | \
jq '.[] | select(.title | contains("transformer")) |
select(.reproducibility_score > 80)'
Research Baseline Selection¶
# Find reliable baselines
scoutml insights reproducibility \
--domain "nlp" \
--limit 30 | \
grep -E "(BERT|GPT|T5|RoBERTa)"
Industry Evaluation¶
# Production-viable research
scoutml insights reproducibility \
--year-min 2022 \
--output json | \
jq '.[] | select(.computational_feasibility > 85) |
{title, score: .reproducibility_score, compute: .computational_feasibility}'
Tips and Tricks¶
Quick Filters¶
# Has official code
scoutml insights reproducibility --output json | \
jq '.[] | select(.code_availability > 90)'
# Low compute requirements
scoutml insights reproducibility --output json | \
jq '.[] | select(.computational_feasibility > 85)'
# Recent and reproducible
scoutml insights reproducibility \
--year-min 2023 \
--output json | \
jq '.[] | select(.reproducibility_score > 85)'
Validation Strategy¶
- Check multiple sources - GitHub, Papers with Code
- Read issues/discussions - Common problems
- Look for reimplementations - Alternative versions
- Check citations - Who successfully used it
Related Commands¶
agent implement
- Get implementation guideagent critique
- Detailed analysispaper
- Full paper details