Quick Start¶
Get up and running with ScoutML in 5 minutes!
Prerequisites¶
Before starting, ensure you have:
Choose Your Interface¶
ScoutML provides two ways to interact with the API:
Understanding the Output¶
The search results show:
- Title: Paper title with clickable ArXiv link
- Authors: First author et al.
- Year: Publication year
- Citations: Current citation count
- Score: Relevance score (0-100)
Refining Your Search¶
Add filters to narrow down results:
Getting Paper Details¶
Found an interesting paper? Get more details:
This shows:
- Full abstract
- All authors
- Publication details
- Citation metrics
- Related papers (use --similar
flag)
Comparing Papers¶
Compare multiple papers side-by-side:
The AI-powered comparison highlights: - Key contributions - Methodological differences - Performance comparisons - Strengths and limitations
Getting Implementation Help¶
Want to implement a paper? Our AI agent can help:
This generates: - Step-by-step implementation guide - Code structure recommendations - Key components to implement - Common pitfalls to avoid
Finding Similar Papers¶
Discover related work:
Complete Workflow Example¶
Here's a complete research workflow:
# 1. Search for papers on a topic
scoutml search "self-supervised learning vision" --year-min 2021 --limit 10
# 2. Get details on an interesting paper
scoutml paper 2104.14294
# 3. Find similar papers
scoutml similar --paper-id 2104.14294 --limit 5
# 4. Compare top candidates
scoutml compare 2104.14294 2103.03230 2102.05918
# 5. Get implementation guide for the best one
scoutml agent implement 2104.14294 --framework pytorch
import scoutml
# 1. Search for papers on a topic
results = scoutml.search("self-supervised learning vision", year_min=2021, limit=10)
print(f"Found {len(results['papers'])} papers")
# 2. Get details on the most cited paper
top_paper = max(results['papers'], key=lambda p: p['citations'])
paper_id = top_paper['arxiv_id']
details = scoutml.get_paper(paper_id)
# 3. Find similar papers
similar = scoutml.find_similar_papers(paper_id=paper_id, limit=5)
# 4. Compare top candidates
candidate_ids = [p['arxiv_id'] for p in similar['papers'][:3]]
comparison = scoutml.compare_papers(*candidate_ids)
# 5. Get implementation guide for the best one
guide = scoutml.get_implementation_guide(paper_id, framework="pytorch")
Exporting Results¶
Save results for later analysis:
# Export search results to JSON
scoutml search "BERT" --output json --export bert_papers.json
# Export comparison to Markdown
scoutml compare 1810.04805 1906.08237 --output markdown --export comparison.md
What's Next?¶
Now that you know the basics:
- 📚 Explore all available commands
- 🤖 Learn about AI agents
- 📊 Discover research insights
- 💡 Check out advanced examples
Getting Help¶
If you run into issues:
- Use
--help
with any command for options - Check our troubleshooting guide
- Report issues on GitHub